
www.embedded-world.eu

Testing, Model Checking and Static Analysis
 Dream Team or Rivals?

Sebastian Krings

Axivion GmbH

Nobelstr. 15

70565 Stuttgart, Germany

krings@axivion.com

Abstract—Ensuring reliability and quality of software has

become a necessity. This is especially true for safety critical

systems. To do so, different techniques have been established in

industry and academia. For instance, coding standards such as the

MISRA ruleset or the AutosarC++14 ruleset have been developed.

Additionally, software testing, static analysis and even model

checking and formal proof are used. These approaches differ with

respect to the effort needed and the environments they can be used

efficiently in.

In this paper, we will present a simple case study. Following

the development of a light and speed control system, we will

highlight how and when verification techniques can be employed

and how selected requirements can be translated into properties

to be checked. In particular, we outline how to employ the

mentioned techniques, how they work and which results to expect

from them. Furthermore, we highlight strengths and weaknesses

of the different methods and discuss possible combinations.

Keywords—component; formatting; style; styling; insert (key

words)

I. INTRODUCTION

With the ongoing digitalization, the trend towards the
internet of things, industry 4.0, and the ongoing integration of
embedded devices into everyday objects, our dependency on
software components increases by the hour. From cars to trains
to medical equipment, software components are more safety
critical than ever. Or, as Marc Andreessen put it: “Software is
eating the world” [1]. As a consequence, ensuring both
reliability and quality of software has become a necessity. This
is especially true for safety critical systems, where a malfunction
can directly endanger users as well as innocent bystanders.
However, even for software not deemed safety-critical,
malfunction can and has led to enormous damage and financial
losses [2].

In consequence, several techniques for ensuring the proper
functionality of software have been developed and are in active
use in industry as well as being actively researched in academia.
In the following, we will use a simple case study to highlight
some key techniques for verification and validation and discuss
their application to an embedded software product.

II. CASE STUDY

The case study used as an example throughout this paper is
based on the ABZ 2020 case study [3]. It describes two assistant
systems commonly found in modern cars. The overall system
consists of two loosely coupled components, namely an adaptive
exterior light system (ELS) and a speed control system (SCS).
The ELS controls head- and taillights, setting their brightness
depending on the surroundings and user preference. At the same
time, the SCS controls the vehicle’s speed, again by considering
the environment as well as parameters given by the driver.
Obviously, both are safety critical components, rendering safety
and security a development priority.

Both components are to be developed in C, following the
MISRA C 2012 coding guidelines [4]. A (simplified) component
diagram, taken from [5], is shown in Fig. 1. As you can see, both
ELS and SCS are supposed to be realized as continuous loops of
reading sensors, executing their particular functionality and
storing the last state for future reference. This might be needed
to compute timer offsets or react to changing user inputs.

Both systems receive inputs from the driver via the steering
wheel and various other actuators. Further inputs are provided
by multiple sensors, e.g., for speed or brightness. The system
contains a clock and might have to fulfill various requirements
regarding real-time operations. Finally, the systems provide
output to the actors controlling the car’s light and speed.

III. TESTING, MODEL CHECKING AND STATIC ANALYSIS

In the following section, we will outline how common
verification techniques could be used to validate and verify the
correct operation of ELS and SCS.

A. Testing

Testing is perhaps the most commonly known technique for
asserting the quality of a software system. Simply speaking,
testing tries to ensure the correct behavior of software by
executing it on a set of input data. After execution, the results
are compared to a set of expected results.

For our case study, consider a requirement such as “If the
ignition is ‘On’ and the light rotary switch is in the position ‘On’,
then low beam headlights are activated”. A test case verifying
this requirement could consist of several steps:

1. Initialize the system,

2. Drive the system into an appropriate state, i.e., one
where the ignition runs but the rotary switch has not
yet been turned or vice-versa,

3. Virtually turn the switch to simulate user input,

4. Wait to allow the system to react,

5. Check the control output for the headlights and
compare it to the expected activation.

For thorough and extensive testing to be feasible (early in the
development cycle), parts of the system are mocked. That is,
they are replaced by a placeholder mimicking the original
behavior to some extent. At the same time, the mocked version
is supposed to be easier to handle and to behave more invariant.

For our case study, one could decide to mock away the
(external) clock, simplifying the test cases by abstracting away
from timing issues. Furthermore, the actual sensors of the car
could be replaced by some software component which just emits
the desired sensor readings. The components to be mocked are
marked by the dashed line in Fig. 1.

Especially in the automotive and railway domains we might
also see hardware-in-the-loop tests, where the software is tested
on the (embedded) device build into the actual surrounding
hardware (i.e., car or train). The key idea here is to replace
artificial test environments and mockups as much as feasible by
real usage scenarios.

Major obstacles for thorough testing are the number of test
cases needed and gaining appropriate test data. As you can see
in the example above, the system has to be driven into a certain
state for the test to be meaningful. This could be achieved by
settings its state variables directly or by executing an appropriate

set of actions that will lead the system to the desired state. Either
way, the test will never consider other ways to reach the state or
situations different from the one set up. As a consequence, only
a (possible narrow) part of the system’s behavior is indeed
tested. Different coverage criteria are available to assert the
degree of test coverage and to identify areas where further
testing might be needed.

In addition, gaining test data for software tests is notoriously
hard. Typical limitations include lack of properly formulated
requirements or impractically large amount of test data needed
to cover the system under test. For larger applications,
difficulties stem from the amount and quality of test data
available and the volume of data needed for realistic testing
scenarios [6]. To date, manufacturers have to put enormous
efforts into testing their systems under various environments.
Artificial test data might not be diverse enough to enable desired
test cases [7], whereas the use of real data might be prohibited
due to security or privacy concerns or other regulations such as
the GDPR or ISO 27001.

B. Model Checking

The key idea behind model checking is to systematically
explore all possible states a software system might be in [8]. At
the same time, for each state an analyzer discovers, a set of given
properties is checked. As an example, consider the following
source code.

extern int some_value();
int main {
 int c = 1;
 c += some_value();
 …
}

A simple model checker would try to compute the set of all
reachable states, called the state space. This is done iteratively,
e.g. by building up a graph structure. After the assignment of c

Fig. 1. System Components

www.embedded-world.eu

we would end up with the intermediate graph depicted in Fig. 2.
The next line, in which c is incremented by an (as far as we
know) arbitrary value now shows where simple testing and
model checking differ. Running test cases just executes the code
and thus computes a single resulting value for the variable c.
Model checking however would now follow all possible
executions, each extending the state space. As a result, we end
up with the graph show in Fig. 3.

Clearly, this can quickly lead to a blow-up, rendering simple
approaches to model-checking infeasible for non-trivial
systems. To mitigate the blow-up, different approaches and
extensions have been suggested. These range from avoiding to
explore symmetrical paths to symbolic computations [8], with
further approaches in active research. However, the sheer size of
state spaces of modern software systems often limits the
applicability of model checking.

Regarding our case study, let’s have a look at one of the
requirements again. For the ELS, one of the given requirements
might be that “Whenever the low or high beam headlights are
activated, the tail lights are activated, too”. As you can see, this
requirement cannot be fully verified by testing alone, as we
might never be sure to cover all possible situations in which the
low or head beam highlights are activated.

Using a model checker, the requirement can be formulated
as an invariant, i.e., a property that has to hold for all states on
all execution paths. Let’s assume we have a struct state,
holding the current brightness levels. We can then formulate the
requirement as a number of C-style assertions1:

assert(implies(state.lowBeamLeft > 0,
 state.tailLampLeft > 0 &&
 state.tailLampRight > 0));

A model checker such as CBMC [9] now searched for
counter-examples, i.e., states in which the property does not
hold. If such a state is found, the path to the state is reported to
the user. However, this can only seldom be used to prove the
absence of errors. As the illumination level of the two low beams
and the two tail lamps are stored as a percentage, there are
already

1004 = 100.000.000

combinations of light levels to be checked. Each of those
could be reached on different and perhaps multiple paths.
Additionally, the system’s state does not only consist of these
four variables. For instance, even though not directly

1 Implies is a special macro provided by the CBMC model

checker. Basically, it just unrolls the implication to shorthand || and &&.

responsible for the implementation of the desired functionality,
the number of variables used for product configurations or
product variants alone can be very large. By including additional
variables, e.g., for direction lights, the system’s state-space
grows even larger, highlighting the combinatorial blow-up
discussed above. In case the implementation uses a running
timer or clock, the state-space might even grow infinitely.

C. Static Analysis

As outlined in the two preceding sections, both testing and
the more systematic model checking have their weaknesses.
Independent of the coverage metric used, tests usually cannot
cover all possible scenarios. At the same time, complete
exploration of the state space of any non-trivial software via
model checking is often technically infeasible.

Static analysis bundles multiple approaches to software
analysis. All have in common, that they avoid code execution.
Instead, properties of interest are derived from the source code
itself or an intermediate representation. Different static analysis
techniques include

• Style checking or linting, i.e., searching the source
code for discouraged constructs,

• Data flow and pointer-based analyses, where the
analyzer tries to infer possible values of variables
and possible targets of pointer at certain program
points. This could be used to detect dereferences of
invalid pointers.

• Abstract interpretation, in which the source code’s
behavior is overapproximated by executing an
abstracted version of the instructions on an abstract
representation of the data used. As an example, an
abstract interpreter might abstract all integers to
either be zero, positive or negative and compute the
effect of an addition accordingly.

• Symbolic techniques, where the source code is
represented as some kind of mathematical formula,
which is then evaluated.

While these techniques are able to cope with much larger
systems, the increased applicability comes at a price. In

Fig. 2. Intermediate State-Space before Addition

Fig. 3. Intermediate State-Space after Addition

particular, with increasing distance to the actual execution,
precision issues start to appear. For instance, as pointer-based
static analyses can never be precise, one often has to decide
between over- and underapproximations. This leads to the
possibility of both false positive as well as false negative reports.
Furthermore, static analysis tools often have to find a good
tradeoff between precision and speed of execution.

Regarding the case study, static analysis can be used to
ensure we indeed follow the MISRA coding guidelines
throughout the implementation. Furthermore, a static analyzer
could pinpoint many programming errors which are not
explicitly given as requirements: absence of null-pointer
dereferences, absence of division by zero or proper usage of
locking mechanisms. In addition, the implementation could be
compared to the architecture outlined in Fig. 1, verifying if we
adhere to the desired calling and communications relationships.

As an example, the check of MISRA C 2012 Rule 17.7 [4]
uncovered a possible problem in our initial implementation. The
rule states that a value returned by a function call shall be used.
As can be seen in the detail view provided by the Axivion Suite
shown in Fig. 4, we did not use the return value of
pthread_create. This is bad practice, since the return value
is used to communicate whether a new thread has indeed been
started (returns 0) or whether an error occurred (returns error
code).

When it comes to the functional requirements, a static
analysis could be used to verify properties such as “After engine
start, there is no previous desired speed. The valid values for
desired speed are from 1 km/h to 200 km/h.”. To verify if the

implementation adheres to the specification, possible values of

the variable holding the desired speed could be inferred using
one of the techniques mentioned above. Afterwards, these values
could be compared to the desired interval.

D. Formal Proof and Deductive Verification

While all approaches introduced so far are very helpful for
verifying software safety, they all leave a certain doubt. Either
they are unable to fully cover the program under test or they
might suffer from false positives / negatives due to imprecision.
With formal proof and deductive verification, the key idea is to
proof a software’s adherence to its specification with
mathematical rigor.

This is done by formulating mathematical models of the
software to be analyzed and the properties to be verified.
Afterwards, different methods ranging from pen-and-paper
proofs to (semi-) automatic proof tools can be used to verify if
the desired properties indeed are guaranteed to hold.

Even though the impact of formal proof to general industrial
software and system development is low so far, it has been
successfully employed in different high-risk areas:

- In avionics software by Airbus [10],

- In railway engineering and signaling by RATP, operator
of the fully autonomous Paris Line 14, and many other
companies [11],

- For cryptographic and communication protocols,

- Microkernels,

- Medical devices, and

- (autonomous) vehicles.

While formal proof provides an extremely high level of
confidence, it also abstracts away from the original
implementation that might not adhere to its mathematical
representation as much as we think. Or, as Donald Knuth
remarked [12]: “Beware of bugs in the above code; I have only
proved it correct, not tried it.”

IV. COMBINING TECHNIQUES

As the previous section has shown strengths and weaknesses
of the verification methods discussed, one might think about
using all of them in conjunction. While this is a valid way to
overcome the individual limitations, it drives up computation
time and resource consumption. Furthermore, this approach only
helps uncover the set of all errors uncovered by the individual
methods.

To improve, different promising integrations of the
techniques into unified verification procedures could be
imagined. For instance, the results of a coarse data flow analysis
could be used to identify interesting value ranges to be later
examined in detail by testing or model checking techniques.

 At the same time, static techniques could be used to show
the absence of some kinds of errors for parts of the program.
This would allow to skip costly execution and testing steps.

Fig. 4. Axivion Report

www.embedded-world.eu

Furthermore, combinations of different static verification
techniques have been developed and are in active use. For
instance, errors reported by an imprecise data flow analysis
could serve as an input for a costly but more precise symbolic
analysis. In this setup, the costly analysis would only run if we
have an initial suspicion. It could then be used to disprove the
existence of an error, thus reducing the number of false
positives.

At Axivion, we recently started integrating our static
analysis tools with the unit and integration testing solution
VectorCAST by Vector Informatik. Currently, the integration is
at the level of reciprocal information exchange between the tools
for simplifying the access to analysis reports as we only
mutually report findings for presentation in the tools’
dashboards.

However, deeper integration steps that could boost the
effectiveness and the performance of both the static analysis as
well as the testing tools are planned for future releases.

V. CONCLUSION

Software checking and verification techniques have come a
long way from academia to industry and are now in widespread
use. However, new techniques are still explored and
combinations of different algorithms are still an active research
topic.

In particular, the ever-increasing complexity of software
systems poses a challenge to analysis tools. Simultaneously,
more businesses rely on software, pushing the boundary of
systems that neeed to be considered mission critical. At the same
time, the increasing demand for software security and its
analysis results in new applications areas for verification tools.

As we have shown, there is no one-fits-all solution for
software verification. Rather, these gathering demands will lead
to further refined and tighter integrated analysis techniques.

Even though this paper has focused on safety aspects,
security is a growing concern for critical systems as well.
Frameworks such as the CERT coding guidelines [13] or CWE’s
list of most common security issues [14] raised awareness for
security concerns. Especially CERT is used to provide coding
rules for critical system development throughout different
industries. However, tools support for automatic verification of
security issues is not as mature as it is for safety issues.

This might be due to security concerns being both very broad
and diverse while often relying on subtle implementation details
as well as on external influences such as (tainted) user input.

Again, we suspect that refined and integrated approaches to
software verification will play an important role in checking
software for potential security issues.

ACKNOWLEDGMENT

Sebastian Krings thanks Philipp Körner, Jannik Dunkelau
and Chris Rutenkolk for tackling the original ABZ case study
with him.

REFERENCES

[1] M. Andreessen, "Why Software Is Eating The World," The Wall Street

Journal, 2011.

[2] NIST, "The Economic Impacts of Inadequate Infrastructure for Software
Testing," National Institute of Standards and Technology, Gaithersburg,
2002.

[3] A. Raschke and F. Houdek, "Adaptive Exterior Light and Speed Control
System," in Proceedings ABZ 2021, unpublished.

[4] Misra, "Misra C:2012 - Guidelines for the use of the C Language in
Critical Systems," 2013.

[5] S. Krings, P. Körner, J. Dunkelau and C. Rutenkolk, "A Verified Low-
Level Implementation of the Adaptive Exterior Light and Speed Control
System," in Proceedings ABZ 2021, unpublished.

[6] N. El Gamal, A. El Bastawissy and G. Galal-Edeen, "Data Warehouse
Testing," in Proceedings EDBT / ICDT, ACM, 2013, pp. 1-8.

[7] F. Haftmann, D. Kossmann and E. Lo, "A Framework for Efficient
Regression Tests on Database Applications," in The VLDB Journal,
2007, pp. 145-164.

[8] C. Baier and J.-P. Katoen, Principles of Model Checking, MIT Press,
2008.

[9] E. Clarke, D. Kroening and F. Lerda, "A Tool for Checking ANSI-C
Progams," in Proceedings TACAS, LNCS 2988, Springer, 2004, pp. 168-
176.

[10] J. Souyris, V. Wiels, D. Delmas and H. Delseny, "Formal Verification of
Avionics Software Products," in Proceedings FM 2009, LNCS 5850,
Springer, 2009, pp. 532-546.

[11] M. Butler, P. Körner, S. Krings, T. Lecomte, M. Leuschel, L.-F. Mejia
and L. Voisin, "The first twenty five," in Proceedings FMICS, LNCS
12327, Springer, 2020, pp. 189-209.

[12] D. Knuth, Notes on the van Emde Boas construction of priority deques:
An instructive use of recursion, 1977.

[13] R. Seacord, The CERT ® C Coding Standard: 98 Rules for Developing
Safe, Reliable, and Secure Systems, Addison-Wesley Professional, 2014.

[14] Mitre, "Common Weakness Enumeration," [Online]. Available:
https://cwe.mitre.org.

