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Abstract—Ensuring reliability and quality of software has 

become a necessity. This is especially true for safety critical 

systems. To do so, different techniques have been established in 

industry and academia. For instance, coding standards such as the 

MISRA ruleset or the AutosarC++14 ruleset have been developed. 

Additionally, software testing, static analysis and even model 

checking and formal proof are used. These approaches differ with 

respect to the effort needed and the environments they can be used 

efficiently in. 

In this paper, we will present a simple case study. Following 

the development of a light and speed control system, we will 

highlight how and when verification techniques can be employed 

and how selected requirements can be translated into properties 

to be checked. In particular, we outline how to employ the 

mentioned techniques, how they work and which results to expect 

from them. Furthermore, we highlight strengths and weaknesses 

of the different methods and discuss possible combinations. 
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I.  INTRODUCTION 

With the ongoing digitalization, the trend towards the 
internet of things, industry 4.0, and the ongoing integration of 
embedded devices into everyday objects, our dependency on 
software components increases by the hour. From cars to trains 
to medical equipment, software components are more safety 
critical than ever. Or, as Marc Andreessen put it: “Software is 
eating the world” [1]. As a consequence, ensuring both 
reliability and quality of software has become a necessity. This 
is especially true for safety critical systems, where a malfunction 
can directly endanger users as well as innocent bystanders. 
However, even for software not deemed safety-critical, 
malfunction can and has led to enormous damage and financial 
losses [2]. 

In consequence, several techniques for ensuring the proper 
functionality of software have been developed and are in active 
use in industry as well as being actively researched in academia. 
In the following, we will use a simple case study to highlight 
some key techniques for verification and validation and discuss 
their application to an embedded software product. 

II. CASE STUDY 

The case study used as an example throughout this paper is 
based on the ABZ 2020 case study [3]. It describes two assistant 
systems commonly found in modern cars. The overall system 
consists of two loosely coupled components, namely an adaptive 
exterior light system (ELS) and a speed control system (SCS). 
The ELS controls head- and taillights, setting their brightness 
depending on the surroundings and user preference. At the same 
time, the SCS controls the vehicle’s speed, again by considering 
the environment as well as parameters given by the driver. 
Obviously, both are safety critical components, rendering safety 
and security a development priority. 

Both components are to be developed in C, following the 
MISRA C 2012 coding guidelines [4]. A (simplified) component 
diagram, taken from [5], is shown in Fig. 1. As you can see, both 
ELS and SCS are supposed to be realized as continuous loops of 
reading sensors, executing their particular functionality and 
storing the last state for future reference. This might be needed 
to compute timer offsets or react to changing user inputs. 

Both systems receive inputs from the driver via the steering 
wheel and various other actuators. Further inputs are provided 
by multiple sensors, e.g., for speed or brightness. The system 
contains a clock and might have to fulfill various requirements 
regarding real-time operations. Finally, the systems provide 
output to the actors controlling the car’s light and speed. 

 

III. TESTING, MODEL CHECKING AND STATIC ANALYSIS 

In the following section, we will outline how common 
verification techniques could be used to validate and verify the 
correct operation of ELS and SCS. 

A. Testing 

Testing is perhaps the most commonly known technique for 
asserting the quality of a software system. Simply speaking, 
testing tries to ensure the correct behavior of software by 
executing it on a set of input data. After execution, the results 
are compared to a set of expected results. 



For our case study, consider a requirement such as “If the 
ignition is ‘On’ and the light rotary switch is in the position ‘On’, 
then low beam headlights are activated”. A test case verifying 
this requirement could consist of several steps: 

1. Initialize the system, 

2. Drive the system into an appropriate state, i.e., one 
where the ignition runs but the rotary switch has not 
yet been turned or vice-versa, 

3. Virtually turn the switch to simulate user input, 

4. Wait to allow the system to react, 

5. Check the control output for the headlights and 
compare it to the expected activation. 

For thorough and extensive testing to be feasible (early in the 
development cycle), parts of the system are mocked. That is, 
they are replaced by a placeholder mimicking the original 
behavior to some extent. At the same time, the mocked version 
is supposed to be easier to handle and to behave more invariant. 

For our case study, one could decide to mock away the 
(external) clock, simplifying the test cases by abstracting away 
from timing issues. Furthermore, the actual sensors of the car 
could be replaced by some software component which just emits 
the desired sensor readings. The components to be mocked are 
marked by the dashed line in Fig. 1. 

Especially in the automotive and railway domains we might 
also see hardware-in-the-loop tests, where the software is tested 
on the (embedded) device build into the actual surrounding 
hardware (i.e., car or train). The key idea here is to replace 
artificial test environments and mockups as much as feasible by 
real usage scenarios. 

Major obstacles for thorough testing are the number of test 
cases needed and gaining appropriate test data. As you can see 
in the example above, the system has to be driven into a certain 
state for the test to be meaningful. This could be achieved by 
settings its state variables directly or by executing an appropriate 

set of actions that will lead the system to the desired state. Either 
way, the test will never consider other ways to reach the state or 
situations different from the one set up. As a consequence, only 
a (possible narrow) part of the system’s behavior is indeed 
tested. Different coverage criteria are available to assert the 
degree of test coverage and to identify areas where further 
testing might be needed. 

In addition, gaining test data for software tests is notoriously 
hard. Typical limitations include lack of properly formulated 
requirements or impractically large amount of test data needed 
to cover the system under test. For larger applications, 
difficulties stem from the amount and quality of test data 
available and the volume of data needed for realistic testing 
scenarios [6]. To date, manufacturers have to put enormous 
efforts into testing their systems under various environments. 
Artificial test data might not be diverse enough to enable desired 
test cases [7], whereas the use of real data might be prohibited 
due to security or privacy concerns or other regulations such as 
the GDPR or ISO 27001. 

 

B. Model Checking 

The key idea behind model checking is to systematically 
explore all possible states a software system might be in [8]. At 
the same time, for each state an analyzer discovers, a set of given 
properties is checked. As an example, consider the following 
source code. 

extern int some_value(); 
int main { 
    int c = 1; 
    c += some_value(); 
    … 
}  

A simple model checker would try to compute the set of all 
reachable states, called the state space. This is done iteratively, 
e.g. by building up a graph structure. After the assignment of c 

 

Fig. 1.  System Components 

 



www.embedded-world.eu 

 

we would end up with the intermediate graph depicted in Fig. 2. 
The next line, in which c is incremented by an (as far as we 
know) arbitrary value now shows where simple testing and 
model checking differ. Running test cases just executes the code 
and thus computes a single resulting value for the variable c. 
Model checking however would now follow all possible 
executions, each extending the state space. As a result, we end 
up with the graph show in Fig. 3. 

Clearly, this can quickly lead to a blow-up, rendering simple 
approaches to model-checking infeasible for non-trivial 
systems. To mitigate the blow-up, different approaches and 
extensions have been suggested. These range from avoiding to 
explore symmetrical paths to symbolic computations [8], with 
further approaches in active research. However, the sheer size of 
state spaces of modern software systems often limits the 
applicability of model checking. 

Regarding our case study, let’s have a look at one of the 
requirements again. For the ELS, one of the given requirements 
might be that “Whenever the low or high beam headlights are 
activated, the tail lights are activated, too”. As you can see, this 
requirement cannot be fully verified by testing alone, as we 
might never be sure to cover all possible situations in which the 
low or head beam highlights are activated. 

Using a model checker, the requirement can be formulated 
as an invariant, i.e., a property that has to hold for all states on 
all execution paths. Let’s assume we have a struct state, 
holding the current brightness levels. We can then formulate the 
requirement as a number of C-style assertions1: 

assert(implies(state.lowBeamLeft > 0, 
            state.tailLampLeft > 0 && 
            state.tailLampRight > 0));  

A model checker such as CBMC [9] now searched for 
counter-examples, i.e., states in which the property does not 
hold. If such a state is found, the path to the state is reported to 
the user. However, this can only seldom be used to prove the 
absence of errors. As the illumination level of the two low beams 
and the two tail lamps are stored as a percentage, there are 
already 

1004 = 100.000.000 

combinations of light levels to be checked. Each of those 
could be reached on different and perhaps multiple paths. 
Additionally, the system’s state does not only consist of these 
four variables.  For instance, even though not directly 

                                                           
1  Implies is a special macro provided by the CBMC model 

checker. Basically, it just unrolls the implication to shorthand || and &&. 

responsible for the implementation of the desired functionality, 
the number of variables used for product configurations or 
product variants alone can be very large. By including additional 
variables, e.g., for direction lights, the system’s state-space 
grows even larger, highlighting the combinatorial blow-up 
discussed above. In case the implementation uses a running 
timer or clock, the state-space might even grow infinitely. 

C. Static Analysis 

As outlined in the two preceding sections, both testing and 
the more systematic model checking have their weaknesses. 
Independent of the coverage metric used, tests usually cannot 
cover all possible scenarios. At the same time, complete 
exploration of the state space of any non-trivial software via 
model checking is often technically infeasible. 

Static analysis bundles multiple approaches to software 
analysis. All have in common, that they avoid code execution. 
Instead, properties of interest are derived from the source code 
itself or an intermediate representation. Different static analysis 
techniques include 

• Style checking or linting, i.e., searching the source 
code for discouraged constructs, 

• Data flow and pointer-based analyses, where the 
analyzer tries to infer possible values of variables 
and possible targets of pointer at certain program 
points. This could be used to detect dereferences of 
invalid pointers. 

• Abstract interpretation, in which the source code’s 
behavior is overapproximated by executing an 
abstracted version of the instructions on an abstract 
representation of the data used. As an example, an 
abstract interpreter might abstract all integers to 
either be zero, positive or negative and compute the 
effect of an addition accordingly. 

• Symbolic techniques, where the source code is 
represented as some kind of mathematical formula, 
which is then evaluated. 

While these techniques are able to cope with much larger 
systems, the increased applicability comes at a price. In 

 

Fig. 2.  Intermediate State-Space before Addition  
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particular, with increasing distance to the actual execution, 
precision issues start to appear. For instance, as pointer-based 
static analyses can never be precise, one often has to decide 
between over- and underapproximations. This leads to the 
possibility of both false positive as well as false negative reports. 
Furthermore, static analysis tools often have to find a good 
tradeoff between precision and speed of execution. 

Regarding the case study, static analysis can be used to 
ensure we indeed follow the MISRA coding guidelines 
throughout the implementation. Furthermore, a static analyzer 
could pinpoint many programming errors which are not 
explicitly given as requirements: absence of null-pointer 
dereferences, absence of division by zero or proper usage of 
locking mechanisms. In addition, the implementation could be 
compared to the architecture outlined in Fig. 1, verifying if we 
adhere to the desired calling and communications relationships. 

As an example, the check of MISRA C 2012 Rule 17.7 [4] 
uncovered a possible problem in our initial implementation. The 
rule states that a value returned by a function call shall be used. 
As can be seen in the detail view provided by the Axivion Suite 
shown in Fig. 4, we did not use the return value of 
pthread_create. This is bad practice, since the return value 
is used to communicate whether a new thread has indeed been 
started (returns 0) or whether an error occurred (returns error 
code).  

When it comes to the functional requirements, a static 
analysis could be used to verify properties such as “After engine 
start, there is no previous desired speed. The valid values for 
desired speed are from 1 km/h to 200 km/h.”. To verify if the 

implementation adheres to the specification, possible values of 

the variable holding the desired speed could be inferred using 
one of the techniques mentioned above. Afterwards, these values 
could be compared to the desired interval. 

 

D. Formal Proof and Deductive Verification 

While all approaches introduced so far are very helpful for 
verifying software safety, they all leave a certain doubt. Either 
they are unable to fully cover the program under test or they 
might suffer from false positives / negatives due to imprecision. 
With formal proof and deductive verification, the key idea is to 
proof a software’s adherence to its specification with 
mathematical rigor. 

This is done by formulating mathematical models of the 
software to be analyzed and the properties to be verified. 
Afterwards, different methods ranging from pen-and-paper 
proofs to (semi-) automatic proof tools can be used to verify if 
the desired properties indeed are guaranteed to hold. 

Even though the impact of formal proof to general industrial 
software and system development is low so far, it has been 
successfully employed in different high-risk areas: 

- In avionics software by Airbus [10], 

- In railway engineering and signaling by RATP, operator 
of the fully autonomous Paris Line 14, and many other 
companies [11], 

- For cryptographic and communication protocols, 

- Microkernels, 

- Medical devices, and 

- (autonomous) vehicles. 

While formal proof provides an extremely high level of 
confidence, it also abstracts away from the original 
implementation that might not adhere to its mathematical 
representation as much as we think. Or, as Donald Knuth 
remarked [12]: “Beware of bugs in the above code; I have only 
proved it correct, not tried it.” 

IV. COMBINING TECHNIQUES 

As the previous section has shown strengths and weaknesses 
of the verification methods discussed, one might think about 
using all of them in conjunction. While this is a valid way to 
overcome the individual limitations, it drives up computation 
time and resource consumption. Furthermore, this approach only 
helps uncover the set of all errors uncovered by the individual 
methods. 

To improve, different promising integrations of the 
techniques into unified verification procedures could be 
imagined. For instance, the results of a coarse data flow  analysis 
could be used to identify interesting value ranges to be later 
examined in detail by testing or model checking techniques. 

  At the same time, static techniques could be used to show 
the absence of some kinds of errors for parts of the program. 
This would allow to skip costly execution and testing steps. 

 

Fig. 4. Axivion Report 
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Furthermore, combinations of different static verification 
techniques have been developed and are in active use. For 
instance, errors reported by an imprecise data flow analysis 
could serve as an input for a costly but more precise symbolic 
analysis. In this setup, the costly analysis would only run if we 
have an initial suspicion. It could then be used to disprove the 
existence of an error, thus reducing the number of false 
positives. 

At Axivion, we recently started integrating our static 
analysis tools with the unit and integration testing solution 
VectorCAST by Vector Informatik. Currently, the integration is 
at the level of reciprocal information exchange between the tools 
for simplifying the access to analysis reports as we only 
mutually report findings for presentation in the tools’ 
dashboards. 

However, deeper integration steps that could boost the 
effectiveness and the performance of both the static analysis as 
well as the testing tools are planned for future releases. 

V. CONCLUSION 

Software checking and verification techniques have come a 
long way from academia to industry and are now in widespread 
use. However, new techniques are still explored and 
combinations of different algorithms are still an active research 
topic. 

In particular, the ever-increasing complexity of software 
systems poses a challenge to analysis tools. Simultaneously, 
more businesses rely on software, pushing the boundary of 
systems that neeed to be considered mission critical. At the same 
time, the increasing demand for software security and its 
analysis results in new applications areas for verification tools. 

As we have shown, there is no one-fits-all solution for 
software verification. Rather, these gathering demands will lead 
to further refined and tighter integrated analysis techniques. 

Even though this paper has focused on safety aspects, 
security is a growing concern for critical systems as well. 
Frameworks such as the CERT coding guidelines [13] or CWE’s 
list of most common security issues [14] raised awareness for 
security concerns. Especially CERT is used to provide coding 
rules for critical system development throughout different 
industries. However, tools support for automatic verification of 
security issues is not as mature as it is for safety issues. 

This might be due to security concerns being both very broad 
and diverse while often relying on subtle implementation details 
as well as on external influences such as (tainted) user input. 

Again, we suspect that refined and integrated approaches to 
software verification will play an important role in checking 
software for potential security issues. 
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