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Abstract. Employing formal methods for software development usually
involves using a multitude of tools such as model checkers and provers.
Most of them again feature different backends and configuration options.
Selecting an appropriate configuration for a successful employment be-
comes increasingly hard. In this article, we use machine learning methods
to automate the backend selection for the ProB model checker. In par-
ticular, we explore different approaches to deep learning and outline how
we apply them to find a suitable backend for given input constraints.

Keywords: Formal Methods · Model Checking · Automated Configu-
ration · Deep Learning.

1 Introduction and Motivation

The typical workflow when using formal methods consists of requirements en-
gineering, writing specifications and analysing them using proof techniques and
model checking. For all three tasks a variety of tools exists, each featuring a
multitude of configuration options.

However, selecting the best tool for a task or choosing the optimal configura-
tion is not trivial, even for domain experts. This is in alignment with the No Free
Lunch theorem [43,42], and also affirmed by empirical evaluation on verification
tasks as shown by Krings et al. [23] for the B method.

For instance, when solving constraints involving relations over sets, a SAT
solver often provides a better performance than an SMT solver or a solver based
on constraint logic programming [25]. However, especially when using integers,
an SMT solver is often preferable to a SAT solver: a SAT solver needs to restrict
the bitwidth which might result in integer overflows. Furthermore, an SMT solver
directly supports integers without translation into propositional logic.

However, one cannot easily generalise on which constraints different solvers
are efficient as it is impossible to set up universal selection rules. Consequently,
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we decided to use statistical models in order to predict the constraint solver
which most likely provides the best performance for a given constraint.

In this paper, we present our work towards using machine learning for the
automated configuration of ProB [31,30,29], a model-checker and constraint
solver for the B method [1]. In particular, we try to automate the selection of
backends used for constraint solving in various places, e.g. for computing suitable
parameters to operations or for symbolic model checking.

2 Related Work

Using heuristics, statistics or machine learning for configuration or selection of
algorithms has been tried both for theorem provers and constraint solvers.

For the SETHEO theorem prover [28], Goller [16] employed folded archi-
tecture networks [17] to learn heuristic evaluation functions, i.e. performance
measures for individual inference steps within a proof. While the results were
promising, experiments were run for simple problems, with Goller stating that
‘the next step is to experiment in a more realistic application domain’ [16].

In the work of Bridge [7], support vector machines were used to automate the
heuristic selection for the theorem solver E [39]. Here, the problem was limited
to first order logic with equality. Bridge was able to improve E with his heuristic
selection as it outperformed fixed heuristics as well as the already implemented
auto-mode of E.

In the works of Healy [20,21], an SMT solver portfolio was conducted for
Why3. Why3 [4,13] is a platform for deductive program verification, which pro-
vides its own language, WhyML, to specify a program and bindings to multiple
different SMT solvers for the formal verification. The solver selection was done
via decision trees which predicted the runtime needed for each solver construct-
ing a ranking from fastest to slowest. The fastest solver is then proposed for
verification of a given proof obligation.

In contrast to the works of Goller or Bridge, this article concerns itself with
the higher-level language B. Besides first order logic with equality (c.f. Bridge’s
work) B also captures multiple different theories as is briefly outlined in the
upcoming Section 3, including functions, sets, quantifiers, and non-deterministic
assignments.

In contrast to Healy, this article concerns itself with a classification problem
rather than a regression task. Further, unknown is used as its own class to
capture instances neither of the involved backends is able to provide an answer
for. Although an unknown solvability of a given proof obligation is implicitly
detected in Healy’s work (predicted runtime for all backends is greater than the
timeout the data was generated for), having an actual probability of how likely a
backend would return no answer for a given constraint might be more expressive.
For instance, one might intervene early rather than sequentially querying each
solver in the ranked list, depending on a probability threshold. Further, the
calculated probability distribution also provides an implicit ranking ordering
the backends by descending probabilities.
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3 Primer on B and ProB

B [1] is a formal verification language for specifying, designing, and coding soft-
ware systems as well as for performing formal proof of their properties. It follows
the correct-by-construction approach and is based on first-order-logic and the
Zermelo-Fraenkel set theory with the axiom of choice [15,14]. Further, it makes
use of general substitution for state modifications, and of refinement calculus [3,2]
to describe models at different levels of abstraction [8].

B machines consist of variable and type definitions as well as possible initial
states. By defining machine operations, one is able to specify transitions between
states. These transitions consist of substitutions, which may be non-deterministic
depending on the level of abstraction. An operation can have a precondition
enabling or disabling execution based on the current state. To ensure certain
behaviour, the user can define machine invariants, i.e. safety properties that
have to hold in every reachable state. The correctness of a formal model hence
refers to the preservation of the specified properties in each reachable state.

For instance, consider the invariant ∀x ∈ S · (∃n · x = 2n) for a manually
assembled set S, and an operation with parameter n which adds 2n to the set
if not yet present: op(n) = PRE n:NAT & 2**n/:S THEN S:=S\/{2**n} END.
The invariant now poses a constraint onto S which has to be satisfied in each
reachable state including the states transitioned into by executing op.

Using Atelier B [11] or ProB [31,30,29] one can verify a B model and analyse
its state space. In particular, ProB allows the user to animate formal models,
providing a model checker and constraint solver. ProB’s kernel [29] is imple-
mented in SICStus Prolog [10], using the CLP(FD) finite domain library [9]. Al-
ternatively, the backend can be substituted with a binding to a different solver.
For one, a constraint solving backend based on Kodkod [41] is available [34].
Furthermore, an integration with the SMT solver Z3 [12] (connected to ProB
as outlined in [24]) can be used to solve constraints.

The different backends have their own strengths and weaknesses. As the
name suggests, CLP(FD) is particularly strong when dealing with variables hav-
ing finite domains. On unrestricted problems, CLP(FD) can fail even on trivial
problems such as X < Y ∧ Y < X, whereas it easily detects unsatisfiability if
we restrict the domains of X and Y .

The Kodkod backend performs well on problems involving relations between
different sets. However, it does not support the full range of constructs avail-
able in B. Consequently, ProB includes a fallback to the CLP(FD) backend for
untranslatable parts.

In contrast to CLP(FD), the SMT-based backend performs well on unre-
stricted problems. Its particular strength is detecting unsatisfiability, while it
does not perform as well for model finding, i.e. for finding variable valuations for
satisfiable constraints. Again, the backend can be used on its own, i.e. with Z3 as
the only solver involved. Comparable to Kodkod, Z3 can also be used together
with the CLP(FD) backend in an integrated solving procedure as described by
Krings et al. [24]. As we wanted to understand what influences the performance
of the different backends, we used the standalone backend in the following.
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4 Machine Learning on B Constraints

In this article, we consider three different classification problems:

Singular ProB Classification Given a single constraint p, is it possible to
classify whether ProB’s default backend will be able to determine whether
p has a solution?

ProB+Kodkod Classification Given a single constraint p, is it possible to
classify whether the default backend or the one based on Kodkod can de-
termine satisfiability of p faster than the other, or if both will answer with
unknown?

ProB+Z3 Classification Given a single constraint p, is it possible to classify
whether the default backend or the one based on Z3 can determine satisfia-
bility of p faster than the other, or if both will answer with unknown?

Initially, we aimed at creating an expert system able to propose a suitable
backend for a given task or constraint. However, soon we realised that we lack
deeper understanding of why a solver performs better on certain tasks than
another. Further, the assembly of an expert system of this magnitude of com-
plexity requires an unreasonable amount of pure programming work presumably
consisting of myriads of edge-cases.

Hence, we opted for machine learning techniques. We supposed a machine
learning algorithm might be capable of capturing any characteristics necessary
for selecting the most suited backend for a given constraint in a fast and auto-
mated way.

4.1 Brief Introduction to Deep Learning

A deep neural network (DNN) [36,37] aims to approximate a function y = f?(x)
by learning a function ŷ = f(x;W ). Hereby, W is a matrix of parameters to
be learned, whereas ŷ is the prediction. During a training phase, the difference
between the prediction ŷ and the corresponding ground truth y is calculated
and minimised by adjustments to the parameters in W . This process is called
backpropagation (c.f. [38]). Internally, a neural network conducts a matrix multi-
plication ŷ = f(x;W ) = g(WTx) with a chosen activation function g : R −→ R.
This matrix application can be layered by alternating parameters and activation
functions, resulting in multiple parameter matrices W1, . . . ,Wn. Such a neural
network is said to have n layers, with n − 1 hidden layers. For n > 1, a neural
network is said to be a deep neural network. Besides parameters to be learned,
a neural network further depends on a selection of hyperparameters, which are
manually selected configurations referring to a network’s architecture that are
not adjusted during training, e.g. the amount of layers n is a hyperparameter.

DNNs work over numeric vectors of fixed length d as input. Constraints how-
ever are neither vectors nor of fixed length. Hence, a translation from a given B
constraint into a vector x ∈ Rd is necessary. For this, d characterizing features
x1, . . . , xd are collected per constraint, resulting in a vector (x1, . . . , xd)

T ∈ Rd.
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Such features should be descriptive enough to characterise the sample they were
collected from sufficiently for the problem at hand. As an example for classifica-
tion purposes: it is easy to distinguish between cats and elephants by size, and
it is impossible to do so by number of legs.

We present two different translations from constraints as they would be pre-
sented to our backends into vectors, one based on 17, the other based on 185
features. All features are manually selected characteristics incorporating knowl-
edge of the problem domain. Note that these features are not invariant under
rewriting that preserves logical equivalence, i.e. two constraints that are logi-
cally equivalent possibly result in two different feature vectors. For instance, the
expressions x+x+x and 3*x have different features but equivalent semantics.

Additionally, we followed an alternative approach relying on convolutional
neural networks (CNNs). A CNN is a specialised kind of neural network, which
processes data with a grid-like topology, most notably images [27,18]. For this,
we translate B constraints into images of a predetermined size of n×n pixels. As
this translation requires no prior domain knowledge, it serves as a comparison
metric for the aforementioned hand-crafted features. Internally, a set of image
processing filters are learned during training, suitable to the very problem at
hand. Thus, one might say that a CNN learns necessary features itself.

4.2 The Initial Set of 17 Features

The initial set of features consists of 17 values mainly consisting of the absolute
numbers of certain operators used in a constraint. These features capture the
usages over the different theories supported in B mainly on an operator level.
For instance, the features include the number of arithmetic operators used in
the constraint, the number of set operations such as set memberships, as well as
the number of universal and existential quantifiers. Further, they aim to capture
some properties of the contained identifiers, e.g. the amount of unique identifiers
used, or the amount of identifiers with finite or infinite domains.

4.3 The Set of 185 Features

The second set of features grew bigger as we aimed to cover most of the operators
and theories used in the B method more precisely than the 17 features did. This
led to 185 distinct features. One of the main differences to the first set of features
is that the features formulate a ratio per operator over the corresponding theory
or the number of top-level conjuncts in the given constraint.

For instance, for a given theory T (such as integer arithmetic) for which B
implements n operators op1, . . . opn (e.g. +,×,÷,mod, succ, pred), some features
are: The amount of occurrences of an operator opi divided by the number of top-
level conjuncts in the respective constraint; The amount of operator occurrences
divided by the sum of all operators belonging to the theory T ; The sum of all of
T ’s operators divided by the sum of top-level conjuncts.
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4.4 A Convolution Approach

Constraints are of dynamic size, i.e. their string representation can be arbitrarily
long. Furthermore, they do not inherit an obvious grid-like topology. Thus, CNNs
cannot be used for classification without appropriate preprocessing. However,
Loreggia et al. [33] proposed a promising approach of translating SAT, CSP, or
MIP problems into images, visualised by an example in Figure 1.

The translation process makes use of the fact that ASCII character codes
range from 0 to 255. This makes the constraints conveniently mappable into
grey scale pixels by an identity mapping. A given constraint of length N is fit
into an M ×M matrix with M = d

√
Ne. The missing entries are filled with the

value 32 (ASCII value for the space character). This matrix is a lossless mapping
from the original constraint with each entry being interpretable as a grey scale
pixel. The image now is scaled to an arbitrary target size of n× n pixels.

Choosing the space character as a filler is arbitrary, as it could have also been
the line feed character (10) or even a null byte (0). However, the space character
already has a natural occurrence in the ASCII version of a B constraint, as it
may separate variables from operators and such alike. Meanwhile, neither the
line feed nor the null byte occur in any of those constraints.

Although potential downscaling results in the translation no longer being
lossless, Loreggia et al. express the strong believe that structure and self-similarity
exposed by the instances remain throughout the scaling step: “While scaling the
images incurs a high loss in information it seems to be the case that the retained
structure is sufficient to address decision problems [. . . ]” [33].

For this article, the resulting images are scaled to the sizes of 32 × 32 and
64 × 64 pixels, which hold up to 1024 and 4096 ASCII characters respectively.
As the constraints have no theoretical upper limit on their size, it is not possible
to find an image size that can contain any constraint losslessly (i.e. the resulting
image does not need to be down-scaled). However, of the training data gathered
for this article, around 64.6% of constraints fit into 1024 ASCII characters, and
even 92.0% of them fit into 4096 characters. Thus, the chosen sizes compromise
between fitting most of the data losslessly and having a part of the data being
downscaled to decrease computational complexity.

5 Methodology

For the training of the DNNs, the training data was randomly split into three
subsets. These are the training set, the validation, and the test set, consisting of
64%, 14%, and 20% of the training constraints respectively, and being pairwise
distinct.

During training, the training set is fed through the model multiple times,
referred to as epochs, in order to enable the model to learn to generalise over
it. The performance is then measured on the validation set. Usually, the perfor-
mance drops from training set to validation set, as the model has already adapted
to the training data. If the performance on the validation set can keep up, this
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Constraint:
coins ∈ N ∧ soda ∈ N ⇒ coins > 0 ∧ soda > 0 ∧ coins− 1 ∈ N ∧ soda− 1 ∈ N

Classical B syntax:
coins:NATURAL & soda:NATURAL => coins>0 & soda>0 & coins-1:NAT...

ASCII codes:
〈99, 111, 105, 110, 115, 58, 78, 65, 84, 85, 82, 65, 76, 32, 38, 32, 115, 111, 100, 97, 58, 78, 65, 84, 85, 82, 65, . . . 〉

M ×M Matrix:

99 111 105 110 115 58 78 65 84 85
82 65 76 32 38 32 115 111 100 97
58 78 65 84 85 82 65 76 32 61
62 32 99 111 105 110 115 62 48 32
38 32 115 111 100 97 62 48 32 38
32 99 111 105 110 115 45 49 58 78
65 84 85 82 65 76 32 38 32 115
111 100 97 45 49 58 78 65 84 85
82 65 76 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32



M = d
√
83e = 10,

fill with spaces

ASCII values as pixels,
scale to 64× 64 image size

Fig. 1: The translation of constraints into images. A given constraint is interpreted as
a sequence of characters. Those characters are then fit into a grid with each character’s
ASCII value being interpreted as a pixel value generating an image of size M ×M .
The image is scaled to a fixed size, here 64× 64 pixels.

suggests that the model actually learned to generalise. Otherwise, the model is
adjusted to increase performance on the validation set after a new training step.
At no point in time, the model is trained on any sample of the validation set.
The test set serves as a final sanity-check for performance. Training multiple
models, their performances on the validation set are implicitly dependent on
the choice of hyperparameters. Testing the performance of the most promising
models one can see whether the models generalise over the data, or only fit the
validation set. Samples from the test set are never used for training or validation
of the model. To find suitable architectures for the neural networks employed,
we used a random search approach. That is, we set up ranges of possible values
for any hyperparameters, and created new models by randomly choosing val-
ues from those given ranges. This was done to get a good intuition about what
hyperparameters work best for the problem at hand. Found architectures were
not reused for other experiments. We assumed it sensible to keep the architec-
tures between the different experimental settings independent from each other.
As they all shared the same search space, similar models should be found were
suitable. To reduce the time needed for the random search, the training process
for a model was terminated if it could not increase its performance for a set
number of training epochs.
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6 Training Data

To obtain the necessary training set, the first step was to acquire a sufficient
amount of constraints. For this, we extracted invariants, preconditions of each
operation, properties, and more data from 3638 B machines3. These were gath-
ered from the chair of Software Engineering and Programming Languages at
the University of Düsseldorf stemming from different application areas and thus
varying in size and complexity.

These gathered constraints were then used to construct more complex ones.
This served two purposes. Firstly, the amount of examples at hand was in-
creased. Secondly, it ensured the presence of constraints which are harder to
solve. In total, the generation yielded 321,742 constraints. Measured on num-
ber of characters in their ASCII representation, the average constraint length is
1,377.66 characters, with a minimum of 5 and a maximum of 15,383. The length
distribution throughout the constraints is shown in Figure 2.
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Fig. 2: Length distribution of the constraints in the training data.

Each constraint is annotated with the information of which backend is able
to find a solution or show unsatisfiability. For this, we measured the average
run time needed in three runs per backend. As timeout, ProB’s default setting
of 2.5 seconds per constraint was used. The resulting dataset can be found on
GitHub4. From a classification point of view, constraints for which a backend
can determine whether they are satisfiable or unsatisfiable belong to the class
of this backend’s positive samples, while those for which a backend is unable to

3 www3.hhu.de/stups/downloads/prob/source/ProB_public_examples.tgz
4 https://github.com/hhu-stups/prob-examples-metadata

www3.hhu.de/stups/downloads/prob/source/ProB_public_examples.tgz
https://github.com/hhu-stups/prob-examples-metadata
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determine satisfiability, for example, due to a timeout or unsupported constructs,
belong to the class of its negative samples.

Analysing the generated training data reveals that the data poses the class
imbalance problem as shown in Figure 3. The class imbalance problem [26,22]
occurs in a training set for classification with a significant disproportion of class
representation. Ideally, the classes are equally distributed. Otherwise, one runs
at risk to train a dummy-classifier predicting only the stronger presented classes
but classifying poorly elsewise [32,26].
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Fig. 3: Distribution of positive and negative samples throughout the training data.

Note, that the positive and negative samples may differ between two back-
ends. For instance, the 92.6% of positive samples for ProB might not necessarily
all be positive for Kodkod as well.

As a look at the intersatisfiability shows, there are indeed positive samples
for each backend, that are negative samples for another one:

ProB Kodkod Z3
ProB - 99.80% 49.78%
Kodkod 99.60% - 49.74%

Z3 94.76% 94.90% -

Each row states the percentages of positive samples of the solver on the left,
which also belong to the positive samples of the solver on the top. Omitted were
the trivial 100% entries where a solver is compared to itself.

The class distribution is unequal, except of Z3 where it is roughly equal.
To overcome this problem, Japkowicz et al. [22] proposed the method of ran-
dom under-sampling, where samples from the training data are randomly deleted
from the overrepresented classes, until all classes pose an equal distribution in
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the data set. Following this approach, an individual training set was generated
by random under-sampling for each of the three aforementioned classification
problems. For the singular ProB classification the resulting training set con-
sisted of 47,850 remaining constraints, 49.9% of which ProB could determine
satisfiability for and with the satisfiability of the other 50.1% being unknown to
ProB. The training data for the ProB+Kodkod classification still contained
68,201 constraints, where both backends returned the result unknown for 33.4%
of the data, ProB determining satisfiability faster than KodKod for 33.4%, and
for the remaining 33.2% Kodkod being faster. The data of the ProB+Z3 classi-
fication consisted of 47,248 samples split into the classes unknown, ProB, and
Z3 to 33.4%, 33.2%, and 33.4% respectively.

7 Results

Before discussing the results of the training phase, a quick note about how the
performance of the resulting neural networks was measured. As in classification
each sample belongs to one class, the aim is to measure correctly and incorrectly
predicted classes. For each class, a sample constraint x in the training data can
be labelled with l ∈ {+,−}, where + indicates the belonging of x to the positive
class, and − indicates the belonging to the negative class respectively. Another
such labelling z ∈ {+,−} can be given to the prediction ŷ(x), indicating whether
x was predicted to belong to the class in question or not. From said labels one
can now build a confusion matrix [19] consisting of the number of true positives
(TP ), true negatives (TN), false positives (FP ), and false negatives (FN) as
entries:

z = + z = −
l = + TP FN
l = − FP TN

Using the confusion matrix, we can apply the common definitions of the
performance measurements precision, recall, and F1-score [19,40]:

p =
TP

TP + FP
(precision)

r =
TP

TP + FN
(recall)

F1 =
2pr

p+ r
. (F1-score)

Precision represents the predictive value of a label [40] and high precision for
a class indicates that predicting said class usually is correct. Recall represents
effectiveness for a single class [40] and high recall indicates that most of the
samples belonging to said class are predicted as such as well. Now, the F1-score
is defined as the harmonic mean of precision and recall. As we ultimately aim
for a predictor that achieves both, a high precision and recall, we will use the
F1-score as measure of performance.
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Fig. 4: Best performing models for singular ProB classification. Learning curves over
the validation set are shown on the left, the table on the right summarises the best
performances achieved.

7.1 Results for Singular ProB Classification

For the singular ProB classification, the results appear to be promising. The
best performing models’ performances on the validation set are plotted against
the respective training epochs in Figure 4.

In conclusion, the 185 B-features do not appear to be much more expressive
as the initial 17 already were, as can be seen by both models achieving an almost
identical performance on the validation set: 0.732 and 0.738 respectively. As in
the experiments the number and size of the hidden layers was chosen randomly,
the model for 17 happened to have more hidden layers of a larger size (namely
7 layers with 48 units each) than the one for 185 features (2 layers with 4 units
each). As hidden layers can be interpreted as more abstract features themselves,
the smaller architecture might suggest that a small and precise set of features is
sufficient for training a well-performing predictor.

For us, the most notable surprise was the performance of the image based
approach. With an F1-score of 0.823, the best performing CNN model topped
those models for hand-crafted features by a notable margin. This result can be
interpreted in two manners. Firstly, it appears that the structure of a constraint
observable in the ASCII representation is sufficient for classification. In con-
sequence, it may be that a hand-crafted feature set does not need to include
features which are counting nodes in the constraint’s syntax tree. Secondly, as
the CNNs could not rely on any domain knowledge and still outperformed the
models trained on specifically designed features, it may be that the crafted fea-
tures themselves still lack the crucial characteristics needed to properly classify
the constraints. On the other hand, it is possible that the CNN’s advantage lies
simply in the amount of parameters learned. The top CNNmodel learned 162,348



12 J. Dunkelau et al.

parameters, whereas the top FNN models only employed 14,736 parameters for
17 B-features, and 766 parameters for 185 B-features.

Overall, the reached F1-score of 0.823 appears to be a promising result, in-
dicating that this approach is indeed feasible. Verifying the performance on the
test set still yielded an F1-score of 0.819.

7.2 Results for ProB+Kodkod classification

For the ProB+Kodkod classification, there exist three distinct classes as men-
tioned in Section 4. Thus, the base performance of a respective classifier has to
be greater than 0.333 to outperform uninformed guessing. The training perfor-
mances on the corresponding validation set are shown in Figure 5.
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Fig. 5: Best performing models for the ProB+Kodkod classification. Learning curves
over the validation set are shown on the left, the table on the right summarises the
best performances achieved.

Top performances for the 17 and 185 feature sets were 0.495 and 0.472
respectively. Again, the CNN approach takes the first place with an F1-score of
0.550 on the validation set. It even performed a bit better on the corresponding
test set achieving an F1-score of 0.562. Table 1 shows the corresponding test
set precision and recall performances for each class.

As can be seen, the average precision and recall are fairly close. On a per-
class basis, the model seems to predict unknown instances right most of the
time (precision of 0.768), whereas ProB appears to be a class that the model
struggles to recognise in the first place (recall of 0.369), tending to generally
predict in favour of Kodkod (high recall but moderate precision). While the
Kodkod selection models performed better than guessing, having a model which
is only correct in every other case appears not to be practical in the context
of backend selection. Under the assumption that one backend will be chosen
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eventually, the model does not perform notably better than picking a backend
at random. The high precision on unknown constraints however may still help
to detect problematic constraints beforehand.

Class Precision Recall
unknown 0.768 0.591
ProB 0.516 0.369
Kodkod 0.447 0.683
Average 0.577 0.548

Table 1: Precision and recall for the ProB+Kodkod classification on the test set.

7.3 Results for ProB+Z3 classification

For the ProB+Z3 classification, the results outperformed the respective ones
from the Kodkod experiments notably. Although tackling a comparable problem,
the better performances might reside in the fact that ProB and Z3 excel on
more divergent problem classes than ProB and Kodkod do. Again, the image
based approach is the best, reaching an F1-score of 0.658 on the validation set,
and still one of 0.652 on the test set. Figure 6 summarises the learning curves
and validation set performances of the top models for each feature set, whereas
Table 2 displays the best model’s precision and recall on the test set.

Like in the ProB+Kodkod classification, the precision and recall values for
unknown instances are quite high compared to those of ProB or Z3. However,
this time the model appears to predict in favour of ProB, contrary to the
results in the ProB+Kodkod classification. While an F1-score of 0.652 is not
a satisfying rate of success, it notably outperforms uninformed guessing and,
contrary to the respective Kodkod variant, could already improve the selection
step. Further, a corresponding uninformed workflow could consist of defaulting
to one backend, then switching to the second one for instances where the first
one failed to provide a definite answer, rather than guessing. Considering the
high precision of the Z3 class, a workflow that defaults to ProB could already
be improved in overall-performance by using Z3 over ProB for instances where
the model predicts to do so.

Class Precision Recall
unknown 0.845 0.668
ProB 0.490 0.789
Z3 0.714 0.416
Average 0.683 0.624

Table 2: Precision and recall for the ProB+Z3 classification on the test set.
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Fig. 6: Best performing models for the ProB+Z3 classification. Learning curves over
the validation set are shown on the left, the table on the right summarises the best
performances achieved.

8 Conclusion and Future Work

In summary, we conducted a broad random search over different deep learning
models for the classification problems stated in Section 4. For this, we gathered
a training set consisting of various constraints, and crafted two feature sets, one
of 17 and one of 185 features respectively, which incorporated domain knowledge
of the B language and method.

As an alternative approach to compare with, the constraints were translated
into images to train convolutional neural networks, as outlined in Section 4.4.
To our surprise, the image based approach outperformed the domain-specific
features notably. These results might suggest that our hand-crafted features are
still too domain-unspecific. This underlines the initial motivation to use machine
learning instead of an expert system, as we apparently do not understand the
problem domain well enough to precisely formulate meaningful characteristics
as of why a certain backend might outperform another.

We assume that a concise and domain-specific set of features should be able to
yield a better performance than the image based approach. Ideally, the learned
correlations between constraints and suitable backends can be extracted from
trained models. This could lead to a more sophisticated understanding of the
problem domain which allows to formulate more precise feature sets. Thus, it
might be sensible to change the machine learning algorithm to a more trans-
parent one, Refining the feature sets with the help of decision trees [6,35] and
random forests [5] is subject to future work.

Be that as it may, one of the main take-aways is that approaches which
require no domain knowledge can be preferred for initial performance probing
and kickstarting results. Regarding deep learning, such techniques include an
image based approach, as presented in this article, or a sequence based approach
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with recurrent neural networks (RNNs). Comparing performances achieved by
an RNN to those of our CNNs would be quite interesting.

The performances of the best models lead us to the belief, that our approach
is feasible after all. Putting more work into fine-grained training of the top-
performing models should lead to even better results allowing to assemble a
portfolio of different backends from which the most suitable is selected automat-
ically on a per-instance base.

The classification problems which were concerned with selecting between
unknown and two backends tend to favour one of the backends over the other.
This is fine, as in such a case the corresponding uninformed workflow would
presumably consist of defaulting to one backend, then switching to the second
one for instances where the first one failed to provide a definite answer. As
already discussed for the ProB+Z3 classifier, the overall computation time could
be decreased for this workflow by only partially following the predictions (e.g. for
predictions with a high precision).

The performances for detecting instances for which both backends could not
return any answer were consistently the highest in the respective classification
problem, which falls also in line with the notably better performances achieved
for the singular ProB classification. In fact, if we revisit the best performing
model for ProB+Z3 classification and interpret it as a binary classifier between
the classes unknown and either ProB or Z3, it achieves an F1-score of 0.827
which is quite comparable to the singular ProB classifier.

Comparing the presented approach again with the regression approach of
Healy [20,21] it stands out that the latter is more extensible. Adding another
backend would consist of adding a new regression model for said backend’s run-
time under Healy’s approach, whereas in our approach we are not able to add
Kodkod easily to the ProB+Z3 model, since we would have to train a new neu-
ral network instead which classifies between the three backends and the class of
unknown samples. This is a huge drawback, rooted in the fact that the back-
ends’ runtimes are pairwise independent, but determining the fastest in the mix
directly depends on the performances of all.

As the prediction of unknown samples per backend appeared to work well as
stated above, implementing two models per backend might combine the best of
both worlds. On the one hand, a runtime regression model per backend would
easily allow for ranking the individual backends as in Healy’s work. On the
other hand, a singular classifier like the one presented for ProB in Section 7.1
can give an independently computed estimation over the backend’s capability of
finding an answer. For instance, given a ranking of ProB � Z3 � Kodkod with
success probabilities of 62%, 51%, and 97% respectively, it might actually be
more feasible to directly run Kodkod instead of risking two timeouts by running
ProB and Z3 first. In fact the computed probability can be used for a weighted
and more informed ranking.
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