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Abstract. The B-Method has an interesting history, where language
and tools have evolved over the years. This not only led to considerable
research and progress in the area of formal methods, but also to numerous
industrial applications, in particular in the railway domain. We present
a survey of the industrial usage of the B-Method since the first toolset in
1993 and the inauguration of the driverless metro line 14 in Paris in 1999.
We discuss the various areas of applications, from software development
to data validation and on to systems modelling. The evolution of the
tooling landscape is also analysed, and we present an assessment of the
current situation, lessons learned and possible new directions.

1 Introduction

The B-Method [4] for software and systems development and its successor Event-
B [6] has a rich history. B has originally been developed as a successor to Z [10]
by Jean-Raymond Abrial in the 1990s, focusing on two key concepts: refinement
to gradually develop models and tool support, in particular proof and code
generation.

More concretely, B is based on first-order-logic and set theory and follows the
correct-by-construction approach. A formal B model consists of a collection of B
machines. Each B machine may contain constants with properties and variables
with invariants. The state of a B machine can be modified by operations, which
may have preconditions associated with them. The invariants are a crucial con-
cept of B, stipulating properties which hold initially and which must be preserved
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by every operation. B machines can be refined, whereby, e.g., datatypes can be
replaced by more concrete ones or non-determinism can be reduced or removed.
A refinement machine is linked to an abstract machine via a gluing invariant,
which stipulates how its states correspond to states in the abstract machine.
An implementation machine is a refinement machine written in the B0 subset
of the language. The B-Method also describes how to derive proof obligations
to ensure that the invariants always hold and that every refinement machine
correctly realises its abstraction. If all proof obligations are discharged, the im-
plementation machines are “correct by construction”: they correctly implement
the initial abstract B specification.

As of today, the industrial applications of B can be classified into three
categories:

– the original B for software development (classical B) [4]: refine specifications
until a low-level subset of B (B0) is reached where code generation is applied.

– B for system modelling (Event-B) [6]: model an entire system, not just a
particular software component and then verify critical properties and under-
stand why a system is correct.

– B for data validation: express properties in B and check data and configura-
tion parameters in a certified manner.

In this article, we discuss these three classes of applications in turn (Sec-
tions 2, 3 and 4), focussing on railway applications where B had its most signif-
icant impact. We then discuss applications in other areas in Sect. 5, the tools
behind the industrial applications in Sect. 6 and finally conclude with lessons
learnt over the years in the final Sect. 7.

2 B for Software: The Early Days and Industrial Uptake

In the 80s, RATP (Régie Autonome des Transports Parisiens, Paris railway
transport operator and infrastructure manager) and the consortium5 in charge
of the development of SACEM, the train protection system deployed on the
Parisian RER Line A, faced the validation of the first control/command software
of a safety critical railway signalling system ever operated in France. Without a
real background in that domain they started using a tool based on Hoare Logic
to verify assertions included in the code. Then they consulted Jean-Raymond
Abrial who proposed the formalisation and verification of a formal specification
of the software with what can be considered as a sketch of the B-Method. His
proposal was accepted, validation engineers were trained, a formal specification
was written and verified. Eventually, in 1988, SACEM was put into operation to
the satisfaction of all.

In the same year, Abrial presented “The B Tool” [2] with an unnamed syntax.
Most of the further developments, both on the language and on advanced tooling,
were initiated during industrial projects in Paris.

5 Consisting of Alsthom (today Alstom), Compagnie des Signaux (today Hitachi), and
Matra Transport (today Siemens Transportation, France).



After the SACEM experience, RATP, guided by Claude Hennebert, requested
the use of the B-Method for the development of the safety critical software of
the train protection system of the driverless Paris Métro Line 14. Alstom, with
this project in mind, but also for their own developments, decided to use the
B-Method. These are the origins of the development and use of the B-Method,
and of formal methods in general, in the French railway industry.

In 1989, Alstom, RATP and SNCF (Société Nationale des Chemins de fer
Français), willing to industrialise the B-Method, launched a project whose pur-
pose was threefold: firstly, to train engineers in the principles of the method,
secondly, to develop tools to support it and, thirdly, to create methodological
guides to use it. This project, funded partially by the French government and
driven by Alstom, established a close collaboration with J.-R. Abrial and the
team of Ib Sørensen at British Petroleum then at B-Core. Additionally, Abrial
was still in contact with a research group in Oxford and certainly was influenced
in technical details.

After some training sessions given by J.-R. Abrial, an Alstom team started
the development of railway applications with the first version of the B language
and tools provided by J.-R. Abrial and his colleagues. The fundamental syntactic
and semantic concepts of the language (variables, invariant, initialisation,
operations) were already present in this version, but in 1991 it turned out that
evolutions of the language and tools were necessary to structure, analyse and
prove software of industrial size and complexity. This is the reason why structur-
ing (includes, importes, promotes, extends), sharing (sees, definitions)
and configuration (constants, properties, values) clauses were introduced
in the language. With the support of J.-R. Abrial, Alstom decided to develop
its own set of tools for the new language. After two years of development, in
1993, the first version of what was called the B-Toolset was delivered internally,
including a type checker, a proof obligation generator and a theorem prover able
to manage software of industrial size and complexity. By that time, J.-R. Abrial
proposed to Alstom that the Digilog company (then Steria, today CLEARSY)
should industrialise these tools and make them available to RATP and to Matra
Transport, the supplier that won the Paris Métro Line 14 contract (cf. Sect. 2.2).
The work by Digilog on B started in 19956, the contract related to L14 between
RATP, SNCF and INRETS was signed in 1996. Alstom accepted and Digilog
developed Atelier B based on Alstom’s B-Toolset.

The development of the language and of supporting tools was a very impor-
tant aspect of the industrialisation of the B-Method. No less important was the
definition of an effective and efficient development process and methodology for
the new technology, while training engineers to use it.

2.1 Early Adoption

The introduction of the B-Method in an existing conventional software develop-
ment environment necessarily induced the modification of the development pro-

6 Which is the justification for the title of this article.



cess known and accepted by the development, verification and validation teams,
the clients and the safety assessors. Doubts were numerous considering that the
new process should comply with applicable railway standards, that it should
be close to the existing process in order to reuse its infrastructure as much as
possible, and consequently, that the activities related with the B-Method must
be included within the phases of this process. Some questions were:

– Where should the definition of B abstract machines be included? In the
software specification phase or in the software design phase?

– How should B components and formal proofs be documented?

– How should B components and formal proofs be verified, when and by whom?

– How should verification efforts be documented?

– How should module testing, integration and validation testing phases be
modified in order to take advantage of the formal proof of B components?

– How should the development of the part of the software that does not need
to be formally developed interact with the development of the part of the
software that needs to be formally developed?

The companies that introduced the B-Method in their software development
process reacted according to their own practices and experience. When it was
decided to introduce it for the development of safety critical software of railway
systems, the B-Method was neither taught nor used anywhere. Its first users were
trained by J.-R. Abrial himself, who followed also the first developments. The
methodology for using the B-Method and good practices were defined during
these first developments. They address the following questions:

– How to create the architecture of a large B model?

– How to write the operations of abstract machines?

– How to refine abstract data with concrete data?

– How to refine operations?

– How to write loops?

User guides were written and some rules were automated with tools. Once
the tools and good practices were developed and defined, training courses in the
B-Method were given to all staff in the organisation dealing with software en-
gineering: software development engineers, verifiers, validators, safety assurance
engineers and their managers. The sustainability of the B-Method in industry
has been made possible by the creation of an eco-system including RATP, the
operator that requested the application of the method, CLEARSY, the company
that maintains the tools supporting B in the long term, the engineering schools
and universities that train engineers, conduct research and provide tools, and
finally, the companies that provide B expertise and technical assistance. The
existence of international conferences on formal methods and, particularly, on
the B-Method and the participation of the industrial companies in these events
contributes to the dissemination and sustainability of the method.



2.2 Driverless Metro Software: Météor and its successors

Paris Line 14 The most well-known success story of B is the Parisian Métro
Line 14. The main goal was to reduce the time interval between trains, yet
ensuring the correctness and safety of the system. For this, the train control was
automated and the trains are able to travel without a human driver. All safety
critical components, i.e., the train control and the controllers for the automatic
doors dividing the passengers from the tracks, have been formally developed
using B. Since October 1998, the metro works flawlessly and not a single issue
was caused by software. The same holds for the shuttle train at the Roissy
Airport that drives since 2007.

The B models for the Line 14 and the Roissy Shuttle have 115 000 and 183 000
lines of code, 27 800 and 43 610 proofs and a manual proof percentage of 8.1 %
and 3.3 %, respectively. More information concerning both metros and their full
development statistics can be found in [5] and Sect. 4.2 of [62].

In neither case, unit testing was performed. Instead, formal development and
proof gave enough confidence in the correctness of the generated Ada code which
was used without change. The only tests performed were tests concerning the
integration with non-critical software parts and global validation tests.

Early projects, such as the Line 14, pushed tool development. One example
is semi-automatic refinement [22], which by now is included as BART in Ate-
lier B. Going through (data) refinement steps manually is tedious. Often, this
work can be automated though: such a tool can drastically improve development
speed, in particular if code generation from B0 is required.

Canarsie CBTC Siemens has evolved the product for Line 14 and installed
it on many metro lines world-wide, notably on the Canarsie Line [31] in New
York. 53 trains operate without interruption on 17 km of track consisting of 24
stations. In contrast to the Parisian Line 14, two different types of trains are
mixed on the track: more modern trains are equipped with CBTC (computer-
or communications-based train control) systems, whereas older trains are not.
This results in a system that is far more complex than its counterpart in Paris.

Again, the software components of the system are split into parts that are
safety-critical, and those that are non-critical for safety. All safety-critical parts
have been developed in B; the only exceptions are components that cannot be
expressed in a B model, including low-level communications, sensor, motors,
breaks and file input/output.

The Canarsie Line was one of the first industrial applications that included
the use of automatic refinement tools. Even though more proof obligations had
to be discharged, these tools proved to speed up the process considerably. One
of the key sentences concerning the usage of formal methods can be found in the
description of the project:

“Beyond the technological challenge of using such a complex formal method in
an industrial context, it is now clear for us that building software using B is not
more expensive than using conventional methods. Better, due to our experience
in using this method, we can assert that using B is cheaper when considering



Table 1. Overview of Alstom Projects

Product Size First

(kloc) commissioning

Train speed controller for Calcutta Metro Small (< 10) 1992

KVB, train protection system for French mainlines
(no high-speed trains) trains.

Medium (10..50)
1995

SACEM extension for Paris RER Line A. Small (< 10) 1996

Train speed controller for Cairo Metro. Small (< 10) 1997

Speed controller for Lyon Metro. Small (< 10) 1998

Lineside Electronic Unit (LEU) for mainlines in
Australia, China, France, Greece, Italy, Spain, The
Netherlands.

Small (< 10) 2000

URBALIS 200, train protection system for metro lines
in Chile, China, Egypt, India, South Korea, Spain.

Medium (10..50) 2003

URBALIS 400, CBTC system for metro lines in
Australia, Brazil, Chile, China, Dubai, France, Italy,
Mexico, Panama, Qatar, Saudi Arabia, Singapore,
Spain, The Netherlands, Vietnam.

Large (50..250) 2008

the whole development process (from specification to validation and sometimes
certification).” [31]

Safety-Critical Train Software at Alstom Alstom has been a long time propo-
nent of using the B-Method for safety critical software. Most Alstom trains now
include some software which was produced from a B specification. Table 1 gives
an overview of the important railway products where software was developed
with the B-Method. The URBALIS 400 product, with its over 100 installations
worldwide, represents currently the most widespread use of the B-Method for
software in the world.

2.3 Code Generation for Hardware

There were a few research projects on using B for hardware, e.g., at the Atomic
Weapons Establishment (AWE) [32] or within the PUSSEE research project [60],
with applications for SmartCards (see Sect. 5 below). Only recently has B been
used to develop hardware for railway applications, which we describe below.

Platform Screen Doors Controllers CLEARSY has developed several safety sys-
tems controlling the opening and closing of the Platform Screen Doors (PSD)
installed in Metro stations in order to ensure passengers protection. These sys-
tems are independent of the train signalling and automatic operating systems;
they can be installed in a Metro which is already in service. Due to the expan-
sion of the urban population in most big cities in the world, PSD are a first step



towards full automation of a non-automatic, already existing metro line. The
PSD controllers developed by CLEARSY are specified and programmed with B.
First controllers used a dedicated translator from B to Ladder Logic [45], more
recent ones use the CLEARSY Safety Platform. Paris lines 1 and 13, São Paulo
lines 2 and 3, and Stockholm Citybanan metros have been equipped with such
PSD controllers, certified SIL3 or SIL4.

The CLEARSY Safety Platform The CLEARSY Safety Platform [40] is both
a hardware and software platform, aimed at easing the development and the
deployment of safety critical applications, up to SIL4. It relies on the integration
of the B-Method for programming (including mathematical proof), redundant
code generation (to guard against hardware bugs or hardware failure) and com-
pilation, and a hardware platform that ensures a safe execution of the software.
Safety principles are built-in in the hardware and the safety library. The as-
sociated IDE is based on Atelier B and the B language supported [43] has
been specialised to address the specific hardware, to better ensure safety, and to
minimise the proof effort. As of today, the CLEARSY Safety Platform has been
certified 3 times with different certification bodies, for international railways
applications.

3 B for System Modelling

From Software to Systems: Event-B for System Modelling The success of the
Parisian Métro Line 14 showed that, given a set of software requirements, one
could develop formally a program that fulfils it and prove it correct. But the
software requirements used as input make some assumption on the environment
in which the software is to be operated: logical interfaces to other pieces of
software as well as electronic and physical devices such as motors.

Therefore, if the software requirements are wrong or do not fit the operational
environment, the resulting system as a whole would malfunction. It was thus felt
necessary to move the application of formal methods to an earlier phase in the
system development process, namely in the system design phase. System design
is performed by very capable engineers, but addresses very complex systems with
a lot of moving parts and is difficult to reason about informally.

It was thus felt necessary to extend the B-Method to system design activi-
ties [9,3] and another notation was gradually derived from the B language, finally
crystallising into Event-B, aiming for proven system studies where computation
is distributed. In four EU projects concerning the development and industrialisa-
tion of Event-B, numerous industrial partners were involved, including Siemens,
Bosch, SAP, Space Systems Finland, Alstom, CLEARSY, Gemplus, Leonardo
and Critical Software Technologies.

New York Flushing Line CLEARSY used Event-B, supported by the Atelier B
tool, on two major industrial rail projects for New York City Transit (NYCT) to
support safety assurance [57]. In the first project for the New York Flushing line,



formal models of a CBTC were developed and key safety properties were specified
and proved at the system level. The main safety properties addressed were avoid-
ance of train collisions, avoidance of trains traversing unlocked switches (causing
derailment) and avoidance of over-speeding. The second project for NYCT in-
volved an implementation of interlocking different from the first. Because the
system level models were abstracted from details of the implementation, it was
possible to reuse models from the first project in the second project, considerably
reducing safety analysis effort in the second project. A key benefit of the system
level formal analysis of [57] was the way precise properties required of the vari-
ous sub-systems were identified in the design and the assumptions made in one
sub-system about other sub-systems. Since different sub-systems were provided
by different companies, this ensured that these assumptions were clearly com-
municated to relevant stakeholders at early stages of the development, avoiding
problems later during the systems’ integration phase.

Octys In [28], CLEARSY outline how they used Event-B supported by Ate-
lier B to perform safety analysis of an existing CBTC system called Octys for
RATP. Some key insights into the benefits of formalisation are described. For
each safety property to be verified, the approach was to describe the property
informally and an informal argument was developed to explain why the property
held. This helped to frame the subsequent formal modelling and reasoning. It
was found that it was very difficult to achieve a high level of rigour through the
informal reasoning and that the formal reasoning filled in gaps in the reasoning,
providing more complete arguments for safety. The formal reasoning also al-
lowed the isolation of a minimal set of assumptions required to prove the desired
property. This allowed for identification of gaps in the assumptions, whereby the
informal safety requirements were improved.

URBALIS 400 Zone Controller In 2018 [29] the software for the Zone Controller
of the Alstom URBALIS 400 CBTC developed using classical B (see Sect. 2.2
above) underwent a rigorous systems analysis. While the classical B method
ensured that the implementation is correct wrt. the software specification, it
does not guarantee that the algorithms themselves are correct wrt. system level
requirements. The analysis was formalised with an Event-B model which links
environment variables (the real position of the trains) with software variables
(protection envelopes). Atelier B and ProB were used to analyse the system
and extract key properties that ensure the correct and safe functioning. These
properties are of crucial importance when tuning or extending the algorithms of
the zone controller.

RailGround As part of the EU H2020 Enable-S3 project, Thales Austria GmbH
and the University of Southampton applied Event-B and UML-B to the Rail-
Ground interlocking system [25]. The project used UML-B, which allows editing
Event-B models using a UML-like graphical representation.

As well as demonstrating the feasibility of modelling a complex interlocking
system in UML-B, the project also demonstrated benefits of using the UML



diagrammatic notation. The diagrammatic models were found to be easier to
communicate to domain experts than the textual models.

ETCS Hybrid Level 3 HL3 is a novel train control concept that aims at increasing
the throughput of trains without additional rails. Thales Deutschland GmbH
and Universität Düsseldorf used the B-Method to develop a reference model for
a new approach to railway interlocking, Hybrid ERTMS/ETCS Level 3 (HL3),
as part of a field demonstration of the feasibility of the HL3 principles [35].
The focus of the project was on the use of the model-checking and execution
capabilities of ProB both for validation of the model and for use of the model as
a reference implementation of the HL3 principles during the field demonstration.
A graphical visualisation of the railway environment made it easy for the domain
experts to provide feedback on the formal model, leading to improvements of
the specification. A lot of the complexity of HL3 concerns degraded modes and
corner cases, and the formalisation and validation approach allowed these to be
addressed comprehensively. Execution of the B model on ProB was used to
conduct field tests with real trains in realtime.

EULYNX Founded in 2014, EULYNX is a joint European project by several
railway infrastructure providers aiming at a standardisation of interfaces and
signaling systems. One of EULYNX members, the infrastructure division of the
German railway company Deutsche Bahn, uses model-based systems engineering
for their interlocking systems. Using SysML has led to improved specifications
and thus increased the quality of the interlocking system. However, SysML is
merely a semi-formal language. In consequence, within the European Shift2Rail
project, an approach based on UML-B has been used to introduce an Event-
B representation into the development process [17,55]. This effectively enables
formal verification of interlocking systems specified in SysML.

4 B for Data Validation

In the last decade, the B language gained a new application area: aside from
proving software correct, it can be used to ensure that assumptions about config-
uration data hold (often dubbed data validation). Indeed, a safety critical system
often contains many data parameters which are instantiated differently for each
particular deployment of the system. These parameters underlie restrictions to
ensure the proper functioning of the system. When a system is incorrectly con-
figured, this can lead to disaster. It turned out that the B language was very
convenient to express properties for correct configuration.

This intuition gave rise to the development of the OVADO [1] tool for RATP,
which took place in parallel of the early development of the rodin platform. Prior
to adopting such a tool, RATP used to have dedicated tools developed in order
to check the correctness of configuration data for systems received from their
suppliers. But these dedicated tools were expensive to develop and quite inflexi-
ble. Any change in the requirements made it necessary to change the software of



the tool. In contrast, with a generic tool like OVADO, one just needs to modify
the B expression of the property to reflect the change and run the OVADO tool
again.

In some cases, when the software was developed from a B specification, these
properties were already expressed in B and used during the formal safety proof.
This was, e.g., the case for the Paris Line 1 and 14 metro systems and other
installations of the same system in Barcelona or São Paulo. This was one of the
first industrial uses of data validation using ProB by Siemens [49,50,33], inde-
pendently7 conducted in 2008-2009 within the EU Deploy project. Before 2009,
Siemens was using Atelier B with custom proof rules and tactics, dedicated to
deal with larger data values [19,20]. This, however, did not scale to many larger
properties or data values, meaning that manual validation was required that was
cost intensive and error prone. Indeed, the use of ProB did uncover at least one
issue that was missed by the manual validation.

In order to better address industrial needs, tools developed dialects of the
B language and domain specific data validation languages on top of B [44]. In
the context of data validation string manipulations are important; hence ProB
now allows usage of B’s sequence operators on strings (e.g., for concatenation).
Additionally, support for reading and writing XML was added to ProB during
a case study in cooperation with Thales [36].

Data validation with B has now been applied to many railway systems world-
wide, some of which are:

– Line 1 Paris, the second CDGVAL line LISA at the CDG airport in Paris,
São Paulo line 4, ALGER line 1, Barcelona line 9, all by Siemens using a
tool called RDV built-on top of ProB [49,50,33],

– more metro lines in Paris managed by RATP using OVADO, which includes
a tool developed by CLEARSY called predicateB as first chain, and ProB
as secondary tool chain [1,12].

– by Alstom for their URBALIS 400 CBTC system in 2014 using a tool based
on ProB called DTVT developed by CLEARSY for various lines, e.g., in
Mexico, Toronto, São Paulo and Panama [44].

– Alstom and SNCF also applied data validation for ETCS-Level 1 software
in 2018 using another tool developed by CLEARSY using ProB.

– Together with Systerel, Alstom conducted data validation of the Octys CBTC
for RATP in 2017 using the OVADO tool.

– by Thales using a tool based on ProB called Rubin for checking engineering
rules of their ETCS Radio Block Centre (some aspects of Rubin are discussed
in [36]).

– Other tools based on ProB were developed by CLEARSY such as Dave for
General Electric or the latest generation tool called Caval.

An important aspect of these applications is the certification of the tools
according to EN50128. Indeed, this norm stipulates that a data validation tool
is of class T2, namely a tool that “supports the test or verification of the design

7 Initially the ProB team was unaware of the development of OVADO.



or executable code, where errors in the tool can fail to reveal but cannot directly
create errors in the executable software” [26]. The tools mentioned above satisfy
the T2 requirements, e.g., by using a rigorous specification of the tool’s purpose
and a rigorous testing process (see, e.g., [14]). The Caval tool obtained a T2
certificate in November 2019. The tools DTVT and OVADO even use a double
chain: a primary tool that conducts the verification and a secondary tool that
re-checks the result of the first tool.

5 Projects Outside the Railway Domain

Only few projects outside the railway industry are known to use B. Below, we
present two additional areas of application.

Modelling Vehicles In the early 2000s, several projects were initiated to model
vehicles, e.g., to improve the failure diagnostic of the first full-electronic multi-
plexed Peugeots as well as to ease the integration of the sub-systems of a one-time
built military vehicle.

Due to the existence of the vehicles and the complexity of the design, the
modelling adopted was a flat (no refinement) Event-B specification of the func-
tional specification sided with a dictionary model providing additional semantics
and natural language translation elements. A tool, Composys, was developed
to automate validation and test functional architectures. It contained a static
checking tool for B machines, a component-based consistency checking tool, and
a natural language technical documentation generator.

Smart Cards When it comes to smart cards, the use of formal methods is manda-
tory for certification, if a high EAL security level is required. In this case, the
functional specification of the software library is proved to comply with the se-
curity policy, both formalised with Event-B. Hence, application developers are
assured that whatever the API calls, the smart card security is enforced i.e., no
secret is disclosed. Several certifications have been obtained at the highest levels,
in France and in Germany.

B was also used for embedded software development [39] while Event-B was
used for hardware development [16]. The former used the default Atelier B C
code generator while the latter was based on a dedicated translator from Event-B
to synthesisable VHDL.

6 B-Method Tools Throughout the Years

In this section, we will discuss tools for the B-Method that were developed
throughout the years. As expected, not all of them survived. While some have
been replaced by successors, others were only of academic interest. Given that
most of the tools, including their features and peculiarities, are documented by
various research papers and journal articles we keep things brief and reference
the publications below.



B-Toolkit One of the first tools for use with the B-Method is the B-Toolkit [46,56]
by B-Core. The B-Toolkit already was reasonably complete, offering editing,
type checking, animation, proof obligation generation and discharge, documen-
tation generation, and a first code generator targeting C. B-Toolkit is no longer
supported. Its source code has been released under a BSD license at https:

//github.com/edwardcrichton/BToolkit.

Click’n Prove Click’n Prove [8] was an experimental user interface meant to
explore new ways to interact with a prover (by clicking rather than command-
line) and served as a basis for the rodin interactive prover interface. Click’n
Prove was built on top of XEmacs. Internally, it was using the Atelier B tools
for proving.

Atelier B As mentioned above, the success of B in the railway domain drove
the implementation and improvement of B-Method tools, such as Atelier B,
initially to be used for software validation [27,2].

In order to be useful for the safety-critical applications mentioned, Atelier
B needed to be verified and validated itself. To do so, several tasks were per-
formed under the overall responsibility of RATP [41]:

– the theorem prover was subject to external expertise,
– a dedicated tableau-based prover was built to validate most of the theorem

prover’s mathematical rules,
– a committee was set up to demonstrate unprocessed rules by hand,
– a small automated prover was developed to verify the correctness of the

dedicated tableau-based prover.

When it was created in 2001, CLEARSY gathered Atelier B property rights
from Alstom and RATP. Atelier B is currently used by more than 30% CBTC-
based automatic metros worldwide, for embedded and track-side safety software.
This IDE is under continued development with new peripheral functions, e.g.:

– an automatic refiner tool, BART [42], similar to the one used by Siemens for
the Canarsie line,

– a framework to automatically prove and review added mathematical proof
rules, that generates a report for the safety case,

– a generic new proof obligation generator,
– integration of the ProB model checker, SMT solvers and the Why3 platform

in the interactive prover,
– an improved C code generator targetting PIC32 microcontrollers,
– a compiler from B0 models to binary files for the CLEARSY Safety Platform.

While initially only supporting classical B, current versions of Atelier B
support Event-B machines as well. These Event-B machines are described using
an adapted textual representation, with additional keywords (such as ref) and
more liberal refinement which is dealt with by the proof obligation generator.
This renders Atelier B one of the two major IDEs for Event-B, the other one
being rodin.

https://github.com/edwardcrichton/BToolkit
https://github.com/edwardcrichton/BToolkit


Rodin rodin [7] has been developed during the rodin, Deploy and Advance
projects. As a complete IDE, rodin features the Event-B modelling database /
storage, a type checker for Event-B and a proof engine [59] as well as different
editors. Central parts of rodin have been formally specified and proved using
Click’n Prove [7].

As the team developing rodin knew how much implementation effort went
into building Atelier B from the ground up, they were looking into ways to
build rodin on top of an existing framework and finally settled for Eclipse,
from which rodin inherits its main UI, the handling of workspaces and many
internals. Just like Eclipse, rodin is based on plugins and could (at least in
theory) be extended to formalisms other than Event-B.

rodin itself does not include a prover for Event-B. Instead, it just maintains
proof trees in sequent calculus and allows reasoners and tactics to be added by
plugins. In particular, Atelier B’s provers can be added to rodin alongside
others, e.g., SMT solvers. Influenced by the interactive control of provers imple-
mented in Click’n Prove, rodin provides a user interface for interactive proof,
in which the different reasoners can be applied, proof tactics can be performed
and the proof tree can be explored graphically. By doing so, provers can be used
collaboratively inside a single proof.

Several code generators are available for rodin, as are other extensions via
the plugin mechanism. Among the most prominent ones are extensions for the
composition and decomposition of models [23] and the theory plugin, which
permits extending the mathematical core of Event-B by custom theories [52,51].

ProB ProB [48,47] is an animator, constraint solver and model checker for the
B-Method. Its development started in 2001 with a first alpha release made in Oc-
tober 2003. It filled a gap in the B tooling landscape at the time, supporting the
interactive and automatic validation of high-level specifications. Indeed, follow-
ing classical B’s correct-by-construction approach it is vital that the high-level
specifications correctly capture the high-level requirements and functionality.

By then, only the B-Toolkit animator provided some very limited form of
validation, and required the user to provide values for parameters and existen-
tially quantified variables, the validity of which was checked by the BToolkit
prover. This approach was justified by the undecidability of the B language, but
was tedious for the user and prevented automated validation. In contrast, ProB
allows fully automatic animation of specifications, i.e., values for constants, pa-
rameters are computed by ProB’s constraint solver rather than explicitly given
by users. Unknown to the ProB team at the time (around 2000), another team
pursued similar ideas leading to the CLP-S solver [21] and the BZTT tool [11]
based on it. This work also gave rise to a company (Lerios), which concentrated
on model-based test-case generation and later ported the technology to an im-
perative programming language. Unfortunately, the development of BZTT and
CLP-S has stopped; the tool is no longer available.

Using a variety of explicit-state and symbolic model checking approaches,
ProB can be used to systematically check a specification for invariant viola-
tions [48]. Furthermore, ProB supports LTL model checking, and distributed



explicit state model checking. Model checking aside, the constraint-solving ca-
pabilities of ProB can also be used for model finding, symbolic model checking
and deadlock checking as well as test-case generation and drive several of the
animation, visualisation and data validation tools that will be discussed below.

Animation & Visualisation Tools For the industrial applicability of formal meth-
ods, visualisation and graphical model animation allow formal method experts to
communicate with domain experts and enable them to identify errors. This may
go as far as having a “management view”, that is easy to understand and hides
all technical details [41]. Many visualisation and animation tools have been devel-
oped for B and Event-B. Among the first ones are BRAMA [58], which uses Flash
to graphically visualise models. AnimB [54], a plugin for rodin, also provides
graphical visualisations based on Flash. Several tools were developed building
on top of ProB: starting from an early prototype using Flash [15], BMotion-
Studio has been developed for editing and displaying visualisations [37]. Later
on, BMotionStudio was superseded by BMotionWeb [38], an animation engine
based on common web technologies, and the simpler VisB [61] based on SVG
graphics. Another web-based animator was JEB [63], which was independently
developed in JavaScript.

7 Discussion and Conclusions

Development of the B language and tools has been driven by industrial needs,
which probably explains part of its success. A recent survey in the railway do-
main [13] cites mature tooling as the most important reasons to use a specific
formal method. Mainly Atelier B and ProB have been developed for a long
time and have proven themselves in industry projects. They both are mature
tools that also are actively maintained and further features are developed. The
reader may also wish to consult older surveys on industrial use of formal methods
in general such as [18,62,34,53].

Current Situation of B Here is our assessment of the current situation concerning
the use of B in industry:

– B is arguably among the formal methods of greatest industrial impact, albeit
mainly in the railway sector.

– There is still little industrial use of B in production outside of railways. B
seems like a DSL for the railways: topologies can be well expressed using B
relations, integer arithmetic is sufficient in many applications. In railways, we
have clearly defined operating environments which enable exhaustive formal
modelling and inductive reasoning.

– The flagship products of Alstom’s U400 and the successors of Météor are
still operating and being installed on new lines. URBALIS 400 is running on
over 100 lines and has 25% of the worldwide market in CBTC systems.8

8 See the site (accessed 25/5/2020): https://www.alstom.com/our-solutions/

signalling/urbalis-cbtc-range-future-signalling-systems

https://www.alstom.com/our-solutions/signalling/urbalis-cbtc-range-future-signalling-systems
https://www.alstom.com/our-solutions/signalling/urbalis-cbtc-range-future-signalling-systems


– Code generation for B has now moved to hardware level but the use of
classical B for software (outside of hardware) is not increasing. It has not
caught on in Siemens to other products and is not being applied to new
products at Alstom anymore. One reason may be the need for experienced
people. Moving from formal modelling to code generation requires a lot of
extra resources. New tools like automatic refinement (BART) help to some
extent, but one still spends a lot of time discharging proof obligations of
little practical value (and it takes time to identify the really crucial proof
obligations that pose essential problems).

– rodin has had a lot of academic impact, but real industrial use for pro-
duction systems is still somewhat disappointing. Several aspects of rodin
were stimulating academic research and experimentation, but were possibly
detrimental for industrial use, e.g.: the use of Eclipse with its extension mech-
anism, the core language without sequences and machine inclusions, models
being stored in an extensible database rather than a textual format. For
example, the extension mechanism enabled experimentation, but it is con-
fusing for industrialists to know which extensions are stable and are suitable
for industrial use. The absence of a textual format was detrimental for team
collaboration and versioning. Also, the tight link to Eclipse makes it more
difficult to use rodin as a stand-alone headless tool, in case a company’s
development practice is not centred around Eclipse.

An exception here is UML-B [30] and Coda [24], where the tight integration
with Eclipse enabled graphical modelling and industrial applications (cf.
Sect. 3). Also, machine inclusion and textual format are now supported by
the new CamilleX plug-in.9

– B for data validation has caught on and is being used for a wide range of
railway products.

– There is an increased interest and activity by a wider range of industrial
players for systems modelling with B. This is one area were we foresee con-
siderable growth in the coming years, and where B could maybe move to
more widespread use outside the railway domain.

What made B successful in the beginning The ability to specify programs rig-
orously and to demonstrate the compliance of their implementation with their
specification was a major concern for RATP and Alstom in the beginning. The
B-Method answered that need. The following factors also played a major role to
enable B’s initial breakthrough:

– the availability of tools to validate and verify the B formal notation,

– the more tractable proof obligations, thanks to the B machine structuring
clauses and the use of successive refinement,

– the availability of code generators for B0, providing tangible benefits in terms
of testing and certification efforts.

9 See https://wiki.event-b.org/index.php/CamilleX

https://wiki.event-b.org/index.php/CamilleX


Common Success and Fail Factors in Industrial Uses We can identify the fol-
lowing common success factors for the industrial applications of the B-Method:

– Tooling. Formal methods can be of value without tool support, just as a
technique to aid and focus human reasoning on complex systems. However,
tooling provides many additional benefits and the availability of tools played
a major role in most of B’s successful industrial use cases.

– Effectiveness of the method. Thanks to the B-Method it was actually possible
to specify, develop and prove formally programs and avoid a lot of tests.

– Regulatory constraints. The requirement (or at least strong steer) from the
guiding authorities, e.g., RATP, for the suppliers to use formal methods is
definitely a success factor in several of the case studies.

– Expertise. Formal method eduction is not widespread among programmers
and engineers. Hence, the availability of B experts to provide support to a
project team is crucial for success.

– Documentation. The availability of a methodological guide explaining how to
model common artefacts in B (e.g., state machines, iterators) is important.
This allows the spread of good practice among project teams and avoid each
individual reinventing the wheel.

The following fail factors appeared multiple times.

– Functional requirements. Even formally developed programs may not fit the
functional user needs. In other words, using the B-Method does not prevent
developing the wrong program.
This threat can be countered by early uses of animation on the high-level
formal specification along with involvement of domain experts.

– Investment. Human investment is high and it is difficult to retain employ-
ees skilled with the B-Method. Some managers are convinced that formal
modelling and proving is no fit for their “low-grade engineers”.

– Predictability. Proof is not full automatic, therefore, it is difficult to predict
costs and delays of software development.

– Scalability. As far as Event-B is concerned, missing decomposition features
and collaboration support in rodin prevented modelling some more complex
systems by larger teams.

– Disruption. The B-Method for software has a disruptive impact on existing
software development practices; it basically requires to replace the existing
software development cycle with a new one.

– Business plans. The development of bug-free software is often not an im-
portant objective of software companies, and may even be opposite to their
business plans based on consulting and paid upgrades.

Challenges We see the following challenges which lie ahead to a successful
broader adoption of the B methodology.

– Proof and refinement. More automation in proof is needed, for example by
combining provers and constraint solvers, thereby reducing the need for



costly interactive proof. Better feedback for failed proof attempts and as-
sistance in finding inductive invariants would lower barriers for users. The
automation of refinement should be dramatically improved in order to reduce
manual work.

– Manage complex systems and models. In particular, one challenge is to help
users understand bigger formal models, e.g., by new visualisation techniques
or extraction of knowledge guided by machine learning techniques. Auto-
mated correction and suggestions, especially helping non-formal methods
experts.

– Increase expressivity. Guided by the work in data validation, it would be
beneficial, e.g., to enable more convenient use of n-ary relations and asso-
ciated projections, as the standard projections functions prj1 and prj2 on
nested pairs are very cumbersome to use. Another challenge is to be able to
express possibly recursive, higher-order functions so that proof, constraint
solving, animation and execution are possible. Finally, a principled solution
to replace the brittle definitions of classical B should be sought.

– Increase value of B formal modelling by making formal models executable.
Execution makes formal models accessible to domain experts and enables
formal models to be used as cost-effective prototypes. Formal models can
also play the role of interactive requirement or specification documents.

– Marketing. Efficient packaging of B tools such as the CLEARSY Safety Plat-
form to both attract students and industry for practical applications.

– Alternate approaches for B software development. With the progress of model
checking techniques, it will be maybe worth to develop conventionally and
then verify formally, leading to less disruption of existing development prac-
tices.

– Combine systems modelling with implementation. Bridge the gap between
Event-B systems modelling and classical B software development, providing
a seamless process and along with supporting tools for combined systems
modelling and implementation.
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